Помощник
Здравствуйте, гость ( Вход | Регистрация )
Энтропия |
Марко |
01.04.2007, 19:18
Сообщение
#1
|
Знаток Группа: Пользователи Сообщений: 153 Регистрация: 22.02.2006 Пользователь №: 1,159 |
Согласно одной легенде, когда Клод Шеннон (Claude Shannon), гигант мысли и отец теории информации, терзался вопросом, как ему назвать только что изобретенное понятие, он попросил совета у другого гиганта, Джона фон Неймана (John von Neumann). Ответом было: "Назовите это энтропией - тогда в дискуссиях вы получите солидное преимущество - ибо никто не знает, что такое энтропия в принципе". Так родилось понятие "энтропии по Шеннону" (англ. Shannon entropy), ныне широко используемое в теории информации.
Ну что ж, уровни незнания могут быть разными - от полного невежества до глубокого понимания всей сложности проблемы. Попытаемся несколько улучшить наш уровень незнания энтропии. Статистическая энтропия, введенная Людвигом Больцманом (Ludwig Boltzmann) в 1877 году, - это, грубо говоря, мера количества возможных состояний системы. Предположим, мы имеем две системы, состоящие из ящиков и одного шарика в каждой из них. Первая система "ящики плюс шарик" имеет только 1 ящик, вторая - 100 ящиков. Вопрос - в каком ящике находится шарик в каждой системе? Ясно, что в первой системе он может быть только в одном ящике. Помните формулу "Энтропия есть логарифм числа возможных состояний"? Тогда энтропия первой системы равна log1, то есть нулю, что отражает факт полной определенности (кстати, это одна из причин, почему в определении энтропии был использован логарифм). Что касается второй системы, то здесь мы имеем неопределенность: шарик может находиться в любом из 100 ящиков. В этом случае энтропия равна log100, то есть не равна нулю. Ясно, что, чем больше ящиков в системе, тем больше ее энтропия. Поэтому и говорят часто об энтропии как о мере неопределенности, ибо наши шансы "зафиксировать" шарик в конкретном ящике уменьшаются по мере увеличения их числа. Заметьте, что в этом вопросе нас не интересуют физические свойства ни ящиков, ни шарика (цвет, форма, масса, и прочее), то есть энтропия представляет собой понятие реляционного типа*, универсальное по своей сути и иногда (но не всегда) наделенное конкретным физическим смыслом. Мы могли бы заменить шарики электронами, а ящики - вакансиями в твердом теле (или даже какими-то абстрактными категориями , как, например, в теории информации), а понятие энтропии по-прежнему было бы применимо и полезно. Термодинамическая же энтропия, предложенная в 1865 году Рудольфом Клаузиусом (Rudolf Clausius) и, как мы знаем со школы, заданная формулой dS = dQ/T, где dQ - подвод теплоты к элементу вещества, T - темпеpатypа, пpи котоpой он находится, - это частный случай статистической энтропии, справедливый, например, для тепловых машин. Ранее считалось, что термодинамическая энтропия не может быть применима к черным дырам, но Бекенштейн и Хокинг показали, что это не так, при должном определении понятий T и S (см. гл. 2). -------------------- |
Текстовая версия | Сейчас: 10.12.2011, 15:44 |